Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230074, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497255

RESUMO

Commensal enteric bacteria have evolved systems that enable growth in the ecologic niche of the host gastrointestinal tract. Animals evolved parallel mechanisms to survive the constant exposure to bacteria and their metabolic by-products. We propose that drug transporters encompass a crucial system to managing the gut microbiome. Drug transporters are present in the apical surface of gut epithelia. They detoxify cells from small molecules and toxins (xenobiotics) in the lumen. Here, we review what is known about commensal structure in the absence of the transporter ABCB1/P-glycoprotein in mammalian models. Knockout or low-activity alleles of ABCB1 lead to dysbiosis, Crohn's disease and ulcerative colitis in mammals. However, the exact function of ABCB1 in these contexts remain unclear. We highlight emerging models-the zebrafish Danio rerio and sea urchin Lytechinus pictus-that are poised to help dissect the fundamental mechanisms of ATP-binding cassette (ABC) transporters in the tolerance of commensal and pathogenic communities in the gut. We and others hypothesize that ABCB1 plays a direct role in exporting inflammatory bacterial products from host epithelia. Interdisciplinary work in this research area will lend novel insight to the transporter-mediated pathways that impact microbiome community structure and accelerate the pathogenesis of inflammatory bowel disease when perturbed. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Microbioma Gastrointestinal , Animais , Subfamília B de Transportador de Cassetes de Ligação de ATP , Inflamação , Mamíferos , Modelos Animais , Peixe-Zebra , Ouriços-do-Mar
3.
Dev Comp Immunol ; 140: 104584, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343741

RESUMO

The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.


Assuntos
Proteínas do Sistema Complemento , Equinodermos , Animais , Ativação do Complemento , Invertebrados , Imunidade Inata , Vertebrados
4.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666622

RESUMO

Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.


Assuntos
Lytechinus , Xenobióticos , Animais , Técnicas Genéticas , Larva/genética , Lytechinus/genética , Ouriços-do-Mar/genética
5.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653719

RESUMO

The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host-microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.


Assuntos
Sistemas CRISPR-Cas , Ouriços-do-Mar , Animais , Sistemas CRISPR-Cas/genética , Imunidade , Larva/genética , Mutagênese , Vibrio
6.
Dev Biol ; 472: 115-124, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460641

RESUMO

Directed intercellular movement of diverse small molecules, including metabolites, signal molecules and xenobiotics, is a key feature of multicellularity. Networks of small molecule transporters (SMTs), including several ATP Binding Cassette (ABC) transporters, are central to this process. While small molecule transporters are well described in differentiated organs, little is known about their patterns of expression in early embryogenesis. Here we report the pattern of ABC-type SMT expression and activity during the early development of sea urchins. Of the six major ABCs in this embryo (ABCB1, -B4, -C1, -C4, -C5 and -G2), three expression patterns were observed: 1) ABCB1 and ABCC1 are first expressed ubiquitously, and then become enriched in endoderm and ectoderm-derived structures. 2) ABCC4 and ABCC5 are restricted to a ring of mesoderm in the blastula and ABCC4 is later expressed in the coelomic pouches, the embryonic niche of the primordial germ cells. 3) ABCB4 and ABCG2 are expressed exclusively in endoderm-fated cells. Assays with fluorescent substrates and inhibitors of transporters revealed a ring of ABCC4 efflux activity emanating from ABCC4+ mesodermal cells. Similarly, ABCB1 and ABCB4 efflux activity was observed in the developing gut, prior to the onset of feeding. This study reveals the early establishment of unique territories of small molecule transport during embryogenesis. A pattern of ABCC4/C5 expression is consistent with signaling functions during gut invagination and germ line development, while a later pattern of ABCB1/B4 and ABCG2 is consistent with roles in the embryonic gut. This work provides a conceptual framework with which to examine the function and evolution of SMT networks and to define the specific developmental pathways that drive the expression of these genes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Endoderma/metabolismo , Mesoderma/metabolismo , Ouriços-do-Mar/embriologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Ouriços-do-Mar/genética , Ouriços-do-Mar/metabolismo , Transdução de Sinais
7.
Methods Cell Biol ; 151: 353-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948018

RESUMO

Single-domain antibodies, also known as nanobodies, are small antigen-binding fragments (~15kDa) that are derived from heavy chain only antibodies present in camelids (VHH, from camels and llamas), and cartilaginous fishes (VNAR, from sharks). Nanobody V-like domains are useful alternatives to conventional antibodies due to their small size, and high solubility and stability across many applications. In addition, phage display, ribosome display, and mRNA/cDNA display methods can be used for the efficient generation and optimization of binders in vitro. The resulting nanobodies can be genetically encoded, tagged, and expressed in cells for in vivo localization and functional studies of target proteins. Collectively, these properties make nanobodies ideal for use within echinoderm embryos. This chapter describes the optimization and imaging of genetically encoded nanobodies in the sea urchin embryo. Examples of live-cell antigen tagging (LCAT) and the manipulation of green fluorescent protein (GFP) are shown. We discuss the potentially transformative applications of nanobody technology for probing membrane protein trafficking, cytoskeleton re-organization, receptor signaling events, and gene regulation during echinoderm development.


Assuntos
Biologia Molecular/métodos , Proteínas/isolamento & purificação , Ouriços-do-Mar/ultraestrutura , Anticorpos de Domínio Único/biossíntese , Animais , Camelídeos Americanos/imunologia , Camelus/imunologia , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário/genética , Cadeias Pesadas de Imunoglobulinas/genética , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteínas/genética , Ouriços-do-Mar/crescimento & desenvolvimento , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia
8.
Front Immunol ; 10: 3014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993052

RESUMO

Exposure to and colonization by bacteria during development have wide-ranging beneficial effects on animal biology but can also inhibit growth or cause disease. The immune system is the prime mediator of these microbial interactions and is itself shaped by them. Studies using diverse animal taxa have begun to elucidate the mechanisms underlying the acquisition and transmission of bacterial symbionts and their interactions with developing immune systems. Moreover, the contexts of these associations are often confounded by stark differences between "wild type" microbiota and the bacterial communities associated with animals raised in conventional or germ-free laboratories. In this study, we investigate the spatio-temporal kinetics of bacterial colonization and associated effects on growth and immune function in larvae of the purple sea urchin (Strongylocentrotus purpuratus) as a model for host-microbe interactions and immune system development. We also compare the host-associated microbiota of developing embryos and larvae raised in natural seawater or exposed to adult-associated bacteria in the laboratory. Bacteria associated with zygotes, embryos, and early larvae are detectable with 16S amplicon sequencing, but 16S-FISH indicates that the vast majority of larval bacterial load is acquired after feeding begins and is localized to the gut lumen. The bacterial communities of laboratory-cultured embryos are significantly less diverse than the natural microbiota but recapitulate its major components (Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes), suggesting that biologically relevant host-microbe interactions can be studied in the laboratory. We also demonstrate that bacterial exposure in early development induces changes in morphology and in the immune system. In the absence of bacteria, larvae grow larger at the 4-arm stage. Additionally, bacteria-exposed larvae are significantly more resistant to lethal infection with the larva-associated pathogen Vibrio lentus suggesting that early exposure to high levels of microbes, as would be expected in natural conditions, affects the immune state in later larvae. These results expand our knowledge of microbial influences on early sea urchin development and establish a model in which to study the interactions between the developing larval immune system and the acquisition of larval microbiota.


Assuntos
Infecções Bacterianas/imunologia , Resistência à Doença/imunologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/microbiologia , Vibrioses/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Larva/imunologia , Larva/microbiologia , Simbiose/imunologia , Vibrio
10.
Elife ; 62017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447937

RESUMO

IL17 cytokines are central mediators of mammalian immunity. In vertebrates, these factors derive from diverse cellular sources. Sea urchins share a molecular heritage with chordates that includes the IL17 system. Here, we characterize the role of epithelial expression of IL17 in the larval gut-associated immune response. The purple sea urchin genome encodes 10 IL17 subfamilies (35 genes) and 2 IL17 receptors. Most of these subfamilies are conserved throughout echinoderms. Two IL17 subfamilies are sequentially strongly upregulated and attenuated in the gut epithelium in response to bacterial disturbance. IL17R1 signal perturbation results in reduced expression of several response genes including an IL17 subtype, indicating a potential feedback. A third IL17 subfamily is activated in adult immune cells indicating that expression in immune cells and epithelia is divided among families. The larva provides a tractable model to investigate the regulation and consequences of gut epithelial IL17 expression across the organism.


Assuntos
Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Interleucina-17/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Strongylocentrotus purpuratus/microbiologia , Vibrioses/veterinária , Animais , Inflamação/patologia , Larva/microbiologia , Vibrioses/patologia
11.
Dev Biol ; 416(1): 149-161, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265865

RESUMO

E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Leucopoese , Strongylocentrotus purpuratus/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Blástula/citologia , Blástula/embriologia , Sequência Conservada , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas , Células-Tronco , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia
12.
Immunol Cell Biol ; 94(9): 861-874, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27192936

RESUMO

The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Celular , Larva/imunologia , Larva/microbiologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/microbiologia , Animais , Comunicação Celular/genética , Epitélio/imunologia , Regulação da Expressão Gênica , Imunidade Celular/genética , Larva/citologia , Larva/genética , Modelos Imunológicos , Água do Mar , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/genética , Transcrição Gênica
13.
Immunobiology ; 221(8): 889-903, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27020848

RESUMO

The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that responds to microbes effectively by swift expression of the highly diverse Sp185/333 gene family. The Sp185/333 proteins are predicted to have anti-pathogen functions based on inducible gene expression and their significant sequence diversity. Sp185/333 proteins are all predicted to be intrinsically disordered and do not exhibit sequence similarities to other known proteins. To test the anti-pathogen hypothesis, a recombinant Sp185/333 protein, rSp0032, was evaluated and found to exhibit specific binding to marine Vibrio diazotrophicus and to Saccharomyces cerevisiae, but not to two Bacillus species. rSp0032 also binds to LPS, ß-1,3-glucan and flagellin but not to peptidoglycan. rSp0032 binding to LPS can be competed by LPS, ß-1,3-glucan and flagellin but not by peptidoglycan. We speculate that the predicted intrinsically disordered structure of rSp0032 may adapt to different conformations in binding to a limited number of PAMPs and pathogens. Given that rSp0032 binds to a range of targets, and that up to 260 different Sp185/333 proteins can be expressed per individual sea urchin, this family of immune response proteins may facilitate effective host protection against a broad array of potential pathogens encountered in the marine environment.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Saccharomyces cerevisiae/imunologia , Strongylocentrotus purpuratus/imunologia , Vibrio/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Strongylocentrotus purpuratus/química , Strongylocentrotus purpuratus/genética
14.
PLoS One ; 10(9): e0138892, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406912

RESUMO

Effective protection against pathogens requires the host to produce a wide range of immune effector proteins. The Sp185/333 gene family, which is expressed by the California purple sea urchin Strongylocentrotus purpuratus in response to bacterial infection, encodes a highly diverse repertoire of anti-pathogen proteins. A subset of these proteins can be isolated by affinity to metal ions based on multiple histidines, resulting in one to four bands of unique molecular weight on standard Western blots, which vary depending on the individual sea urchin. Two dimensional gel electrophoresis (2DE) of nickel-isolated protein samples followed by Western blot was employed to detect nickel-isolated Sp185/333 (Ni-Sp185/333) proteins and to evaluate protein diversity in animals before and after immune challenge with marine bacteria. Ni-Sp185/333 proteins of the same molecular weight on standard Western blots appear as a broad complex of variants that differ in pI on 2DE Western blots. The Ni-Sp185/333 protein repertoire is variable among animals, and shows a variety of changes among individual sea urchins in response to immune challenges with both the same and different species of bacteria. The extraordinary diversity of the Ni-Sp185/333 proteins may provide significant anti-pathogen capabilities for sea urchins that survive solely on innate immunity.


Assuntos
Variação Genética , Imunidade Inata , Proteínas/genética , Ouriços-do-Mar/microbiologia , Animais , Família Multigênica , Níquel/química , Proteínas/isolamento & purificação , Ouriços-do-Mar/genética , Ouriços-do-Mar/imunologia , Vibrio/imunologia , Vibrio/isolamento & purificação , Vibrioses/imunologia , Vibrioses/veterinária
15.
Dev Biol ; 382(1): 280-92, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792116

RESUMO

Although vertebrate hematopoiesis is the focus of intense study, immunocyte development is well-characterized in only a few invertebrate groups. The sea urchin embryo provides a morphologically simple model for immune cell development in an organism that is phylogenetically allied to vertebrates. Larval immunocytes, including pigment cells and several blastocoelar cell subtypes, emerge from a population of non-skeletal mesodermal (NSM) precursors that is specified at the blastula stage. This ring of cells is first partitioned into oral and aboral fields with distinct blastocoelar and pigment cell gene regulatory programs. The oral field is subsequently specified into several distinct immune and non-immune cell types during gastrulation. Here we characterize the oral NSM expression and downstream function of two homologs of key vertebrate hematopoietic transcription factors: SpGatac, an ortholog of vertebrate Gata-1/2/3 and SpScl, an ortholog of Scl/Tal-2/Lyl-1. Perturbation of SpGatac affects blastocoelar cell migration at gastrulation and later expression of immune effector genes, whereas interference with SpScl function disrupts segregation of pigment and blastocoelar cell precursors. Homologs of several transcription regulators that interact with Gata-1/2/3 and Scl factors in vertebrate hematopoiesis are also co-expressed in the oral NSM, including SpE-protein, the sea urchin homolog of vertebrate E2A/HEB/E2-2 and SpLmo2, an ortholog of a dedicated cofactor of the Scl-GATA transcription complex. Regulatory analysis of SpGatac indicates that oral NSM identity is directly suppressed in presumptive pigment cells by the transcription factor SpGcm. These findings provide part of a comparative basis to understand the evolutionary origins and regulatory biology of deuterostome immune cell differentiation in the context of a tractable gene regulatory network model.


Assuntos
Evolução Molecular , Fatores de Transcrição GATA/metabolismo , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Homologia de Sequência de Aminoácidos , Strongylocentrotus purpuratus/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Diferenciação Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Mesoderma/citologia , Mesoderma/metabolismo , Pigmentação , Strongylocentrotus purpuratus/genética , Transcrição Gênica
16.
Dev Comp Immunol ; 35(9): 959-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21182860

RESUMO

The arms race between hosts and pathogens (and other non-self) drives the molecular diversification of immune response genes in the host. Over long periods of evolutionary time, many different defense strategies have been employed by a wide variety of invertebrates. We review here penaeidins and crustins in crustaceans, the allorecognition system encoded by fuhc, fester and Uncle fester in a colonial tunicate, Dscam and PGRPs in arthropods, FREPs in snails, VCBPs in protochordates, and the Sp185/333 system in the purple sea urchin. Comparisons among immune systems, including those reviewed here have not identified an immune specific regulatory "genetic toolkit", however, repeatedly identified sequences (or "building materials" on which the tools act) are present in a broad range of immune systems. These include a Toll/TLR system, a primitive complement system, an LPS binding protein, and a RAG core/Transib element. Repeatedly identified domains and motifs that function in immune proteins include NACHT, LRR, Ig, death, TIR, lectin domains, and a thioester motif. In addition, there are repeatedly identified mechanisms (or "construction methods") that generate sequence diversity in genes with immune function. These include genomic instability, duplications and/or deletions of sequences and the generation of clusters of similar genes or exons that appear as families, gene recombination, gene conversion, retrotransposition, alternative splicing, multiple alleles for single copy genes, and RNA editing. These commonly employed "materials and methods" for building and maintaining an effective immune system that might have been part of that ancestral system appear now as a fragmented and likely incomplete set, likely due to the rapid evolutionary change (or loss) of host genes that are under pressure to keep pace with pathogen diversity.


Assuntos
Sistema Imunitário/imunologia , Imunoglobulinas/imunologia , Isoantígenos/imunologia , Motivos de Aminoácidos/genética , Animais , Diversidade de Anticorpos/genética , Evolução Biológica , Proteínas do Sistema Complemento/imunologia , Instabilidade Genômica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulinas/genética , Invertebrados , Fisiologia Comparada , Receptores Toll-Like/imunologia
17.
Adv Exp Med Biol ; 708: 260-301, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21528703

RESUMO

A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats.


Assuntos
Ouriços-do-Mar/imunologia , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Sistema Imunitário/imunologia , Lectinas/genética , Lectinas/imunologia , Ouriços-do-Mar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...